NASA-CR-204443 | S LA

Technical Report ey

Investigation of the Use of Erasures in a Concatenated Coding Scheme

Submitted to:

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Submitted by:
Dr. S. C. Kwatra, Principal Investigator
Philip J. Marriott, Graduate Research Assistant

Department of Electrical Engineering
College of Engineering
University of Toledo
Toledo, Ohio 43606

Report No. DTVI-53
June 1997

Technical Report

Investigation of the Use of Erasures in a Concatenated Coding Scheme

Submitted to:

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Submitted by:
Dr. S. C. Kwatra, Principal Investigator
Philip J. Marriott, Graduate Research Assistant

Department of Electrical Engineering
College of Engineering
University of Toledo
Toledo, Ohio 43606

Report No. DTVI-53
June 1997

e Y RS A . . - ¢

This report contains part of the work performed under NASA grant NAG3-1718
during the period September 1994 to June 1997. The research was performed as part of

the Master’s thesis requirement of Mr. Philip J. Marriott.

S. C. Kwatra

Principal Investigator

An Abstract of

Investigation of the use of erasures in a concatenated

coding scheme
by
Philip J. Marriott
Submitted in partial fulfillment of the .requirements for the Master of Science degree in

Electrical Engineering

University of Toledo

June 1997

A new method for declaring erasures in a concatenated coding scheme is
investigated. This method is used with the rate 1/2 K = 7 convolutional code and the
(255, 223) Reed Solomon code. Errors and erasures Reed Solomon decoding is used.
The erasure method proposed use a soft output Viterbi algorithm and information
provided by decoded Reed Solomon codewords in a deinterleaving frame. The results

show that a gain of 0.3 dB is possible using a minimum amount of decoding trials.

ACKNOWLEDGMENTS

I would like to express my appreciation and indebtedness to my advisor Dr.
Subhash Kwatra, for his guidance, support, and extreme patience throughout my masters
program and research. I would also like to thank Dr. Junghwan Kim and Mr. R. E. Jones
of NASA Lewis Research Center for serving on my committee. Pat Konwinski was also
very helpful during the time I spent at this University. My thanks also go out to the
colleagues in the Communications Lab, especially Tingfang Ji, Ping An, and Superna
Metha for the many helpful suggestions while conducting my research.

Finally, I would like to thank my family and friends for their emotional support

and constant encouragement. This research could not have been completed without it.

Table of Contents

ADSITACE oo ettt b ettt e e ene 1
ACKNOWIEAZIMENLS ..ottt ettt ii
Table Of CONLENLS cc.oiuivieiiiiitieieeeeestee ettt eae e e e esaeneens 1ii
List of Figures Lttt R e bt bt et ee e s et e et e aa b e e bt e erbeetbeearesereeerreanreas vi
LISt Of TADIES ...veciiriiiiiiiee ettt ettt ettt er et X
Chapter 1 Introduction . 1
1.1 Proposed reSEarchcccoeoiiiomirisieiieeecieeee e 4
Chapter 2 Backgroundcoeevecveereevenreesessnssessaesseseens . 6
2.1 Reed SOlomon COAEScovurueiirieinireiniei et 6

2.1.1 Galois fieldsccocvviiiiiiiiiice e 7
2.1.2 Generating Reed Solomon codesocoovvveviivioviveeoreeeeenn 10
2.1.3 Decoding of Reed Solomon codesccooevvveiiiiceiiiniene, 14

2.1.3.1 Berlekamp-Massey algorithmccccoovvvvvinrcnnnne. 18

2.1.3.2 Errors and erasures RS decoderccocccvvvivinneenn., 22
2.1.3.3 Berlekamp-Massey algorithm for errors and erasures ... 22

2.2 Block iNerleavingocccoveiiviiiiiiieieeceeeee ettt s r s 26

iii

2.3 Convolutional COAEScciviimimiriiiiieneeieee ettt ve s 33
2.3.1 Convolutional encoderccocemviiniiiiiiiiiicecce e, 33

2.3.2 Decoding of convolutional codescc.ccocoviiiiiiiiccieeincnnn, 36

2.3.2.1 State diagramcccoceeceviniieiierinieeeieee e 36

2.3.2.2 Trellis diagramcoceecevinvviiieiineece e 38

2.3.2.3 The Viterbi algorithmc.ccoovviviiiiiiiiiceeeeee, 41

2.3.2.4 Hard decision decodingccceeeeevreeriiieiiieeieenn. 41

2.3.2.5 Soft decision decodingccccoviniiniiiiee 44

2.3.2.6 Truncation lengthcccoooviviiiiiic e, 46

2.3.3 Soft output Viterbi algorithmc..cccoevvvviviiriiiiicc, 49
Chapter 3 Simulation TecChNIQUESccccecviereicenernsrecsecsnersesaessessessessessassassasss 54
3.1 Random number generators et see e 55
3.1.1 Uniform random number generatorcccccoevvvuvevivecneenennnns 56

3.1.2 Gaussian random number eneratorocowwvovvevvererrerrnnn.. 57

3.2 Sampling bbbt bt st s b e e b e e et e e b te e taaebe e aeenreeas 58
.3.3 FIHETS oo eeere e e rr————aaaetreeaanes 58
3.3.1 Intersymbol interferenceccccoovevieveeviivieieiiiieeeeeees 58

3.3.2 Digital filterscocevvrvvrvirvieiereerinen. et 61

iv

3.3.3 FIR filter design of transmit filteroooweeorrervveerrrrsrrrrrooo 62

3.4 AdAING NOISE ..eviieriiiiiiiietere ettt et 67
3.4.1 Noise equivalent bandwidth ... s 68

3.4.2 Calculating the nOiSe VArianCeccceccmiiinieinresivesiieesneennnens 69

3.4.3 Ideal channel modelccccooociniiniiiniiiii e 73

3.5 Simulation results ... e 74
Chapter 4 Erasure Methods and Simulation Results . vevessssestesanssontssens 76
4.1 Concatenated system simulaﬁon TESUILS ..ot 76
4.2 Erasure Method 1cccoiveivininiiieneseeeiee et 84
4.2.1 Procedure for erasure decoding using Method 1 85

4.2.2. Simulation results for Method 1c.occooviiviiiiiiieeee. 86

4.3 Erasure Method 2cccooooiiiimiiieiiciiececeeec ettt 90
4.3.1 Procedure for updating the flags (UFP)c.ccocovvevvcceveeinenn, 95

4.3.2 Procedure for updating the reliabilit‘y t.ables 96

4.3.3 Procedure for decoding using Method 2cccvevvvviiciicvenanene. 97

4.3.4 An example of erasure decoding using Method 2 97

4.3.5 Results for erasure Method 2cccvvvivveiiiiiiiiiieeeieeeeen. 102

4.4 Erasure Method 3ccoooiiiiiuiiieeeieeee e e 105
4.4.1 An example of erasure decodiﬁg using erasure Method 3 106

Chapter 5 Conclusions- . 118

5.1 FULUTE RESEAICH . rvvvvecerereeeeeeeeseeeeveoneesseesessessssssseseseeseseeseeseernseseesse e 119
Appendix A Simulation Flow Charts ceresssssssssseresrenas . 123
Appendix B Program Listing teeressessessnsieisenssssaresssntssennasssnsasssnsesssnsasnens 127

B.1 Memory allocation fUnCtionScc..ccecceviiiriiiiiiiirerieesr e 127

B.2 Random nurﬁber ZENETALOIS ..eiiuriieiiieiiiieiiteritreerteesier e sttt e s sbeessiaeesaaae e 128

B3 FIHET oottt e 130

B.4 Modulator/Demodulatorcccceecveiiiiiinievienniiniesieeeieesree s sneeensen,. 131

B.5 Calculate POWETc.cciviriieiieiieienienteseite sttt eae e 132

B.6 Interleaver and deinterleaver NS 133

B.7 Convolutional encoder and decodersc.cccocvevriiniennieniinieie e, 134

B.8 Reed Solomon encoder and decodersccccocevimniniecieneeieciereen, 146

B.9 Main program for real system using erasure Method 1ccccee.. 193

B.10 Main program for ideal system using erasure Method 2cccccovnnn. 198

References ; 206

vi

List of Figures

1.1 A concatenated coding system using inner convolutional code with Viterbi

decoding and an outer Reed Solomon codecc.cocveviiiciiniiininiiciinieenn 2
2.1 Encoding circuit for t-error correcting RS codecccoceiviiiiiiniiiiniiniiininiene, 12
2.2 Encoding circuit for t=2 error correcting (7, 3) RS code ..o 13
2.3 LFSR interpretation of (2.7) ..ottt 17
2.4 Typical deinterleaving framec.ccoceevereninienierrnr e 28
2.5 Typical burst error in a deinterleaving framecccoevveeeevieiierivienee e, 29
2.6 An example of a double sided erasure declarationccccoceeevvivvenviericeinneennnn. 30
2.7 An example of a single sided erasure declarationccccceceeviveieinvieiieniceerenennen, 31
2.8 A (2, 1, 2) convolutional encoding circuit 34
2.9 State transition diagram for the encoder in Figure 2.8cccooooiiiiiiiiiiinn, 37
2.10 Trellis diagram (based on the encoder in Figure 2.8)ccccevveviieiiiciiviiie, 38
2.11 Convolutional cOding SYSIEIMcccovuerueierieririisineeree et ee et st 39
2.12 Binary symmetric channel modelcoccceeeiieiienineiiceceeee e 42
2.13 Hard decision Viterbi decoding of r= (110100 10 100001 11) ..covevvevvenvenennnen. 43
2.14 Hard decision Viterbi decoding of r= (11 1100100000 11 11) .ovcvvvvennr.... 44
2.15 DMC channel model for Q=41eVelS oo 45
2.16 Soft decision Viterbi decoding of
r= (1,1, 0,1, 0,0, 1,1,1,0, 0,0, 0,0,0,0,) .eceoiriiriiniieeereeer, 47
2.17 Shift register contents for the soft decision decoding in Figure 2.16 48

vii

2.18 Example of the SOVA ..o 51
3.1 Simulation system modelcocioiiiiiiiniini e 55
3.2 Frequency responses for different rolloff factors ..., 60

3.3 Square root raised cosine filter with x/sin(x) equalization and rolloff factor

o =0.45 (Rg= 1) (normalized freqUENCY) ..coooivveiiniiiiiii e, 64
3.4 Transmit filter transfer function (normalized frequency)c..cccovvecvnieniieiiinnn, 65
3.5 Filter iMPUISE TESPONSEoiviriirisirisisieeseesenseeetetreseesetesesesesetessssesssessssssesesesesesesessens 65
3.6 Non-causal impulse rESPONSEc.cuciuiiimiiiiiiiieiiie e . 66
3.7 Causal IMPUISE TESPONSEeiriieiiiriiiiieitteereeneerteenite sttt e str e ssbeeraeeetreesraeerbeerrea 66
3.8 Hamming window functionccccecceeimiinieninieniereneseeiee et 67

3.9 FIR frequency response vs. analog filter response for a square root

Raised Cosine filter with x/sin(x) equalizationcccecvevveiiivicnrieeiieriiineen, 68
3.10 (2) ReCEIVE FIItBI ..ocvviiiieiiieiieciecectere ettt 69
3.10 (b) Noise equivalent bandwidthccccooeiiiiiiiiiiii e 69
3.11 Power spectral density of AWGN ..ottt 70
3.12 (a) Filter transfer fUNCLIONccveeviiviieeiieiie ettt st 71
3.12 (b) Bandlimmited AWGN before filteringcccoovvvrvemveminenciiiecieceee e 71
3.13 Results of the BPSK simulation for different values of filter rolloff e 15
4.1 Simulation results for the concatenated system with no interleaver 78
4.2 Simulation results for the concatenated system with interleaver depthI=6 80
4.3 Simulation results for the concatenated system with interleaver depthI=8 81
4.4 Simulation results for system 5 using various interleaving depths 82

viii

4.5 Simulation results for Method 1 with no interleaveroveeeeeeeeececee, 87

4.6 Simulation results for Method 1 with interleaver depthI=6ccoecvvrerennnne. 88
4.7 Simulation results for Method 1 with interleaver depth I = 8 e 89
4.8 Uﬁdating of the symbol reliabilities in the SOVA ..o 91
4.9 Interleaving frame with reliability informationccccoooviiiiiciiiicice e, 94
4.10 An example of a deinterleaving frame with reliability valuesccccocenne... 99
4.11 The reliability table for the first iterationcccccooeevviviviieeiiiieececeeeee e, 100
4.12 The reliability table for the second iterationccocveveveeieveeceeiviciccesen. 101
4.13 The reliability table for the third iterationccocoeieiviviiecieeeeeeee s 102
4.14 The reliability table after RSW(1) sﬁccessfully decodescoocovviiiiiiiiiiiee, 109
4.15 The reliability table after RSW(2) successfully decodescocoeccvvvrervennnnn.. 110
4.16 The reliability table after RSW(3) successfully decodescoooveeeeveveenennn... 111
4.17 The reliability table after RSW(4) successfully decodescccocecvvvvvevnnennnn... 112
4.18 The reliability table after RSW(7) successfully decodescocovvevvvreeevenn... 113
4.19 The reliability table after RSW(8) successfully decodesccoeevvvereeervnennn... 114
4.20 The reliability table after RSW(5) successfully decodesooovevervvevenennnn.. 115

4.21 Simulation results of the concatenated system using various erasure methods ... 117

A.1 Flow chart for erasure Method 1 e 123
- A.2 Flow chart for erasure Method 2ccocoooevivieiiieiriccccccee e 124
A.3 Flow chart for the real SIMUIAtionocceovieiievnninieeise e, e 125
A.4 Flow chart for the ideal SIMUIAtON ...coccovveiiiieieeceeeeecc e 126

List of Tables

2.1 List of primitive polynomials form=31t09ccoiiiiiii 8
2.2 Three representations for the elements of GF(8) generated by 1 + x + x* 9
2.3 Shift register contents for the encoding of u = [0t 00° 07] covoivieeieieeivceiece, 14

2.4 Results of the computations for each iteration of the
Berlekamp-Massey algorithm ... 21

2.5 Results of the computations for each iteration of the errors and erasures

Berlekamp-Massey algorithm ... 25
2.6 Encoding of the information sequence u=(101101) ..o, 36
2.7 Development of the state diagramccoceeinierieniiniiccceres e 37
2.8 Conditional probabilities for BSCcccocoiiiiiiiiiccec e 42
2.9 Metric table for BSC i, 43
2.10 Conditional probabilities for DMC ... 46
2.11 Metric table for DMOC ...ttt e 46
4.1 Various systems simulatedcccoivioiniiiiini s vy
4.2 Simulation results using Method 2 with interleaving depth I=8 103
4.3 Simulation results usihg Method 3 with interleaving depth I=8c.. 116

Chapter 1

Introduction

Concatenated coding systems are often used for forward error correction to obtain
large coding gains when transmitting information over unreliable channels. One of the
most popular concatenated coding systems is illustrated in Figure 1.1. This concatenated
system uses a convolutional code with Viterbi decoding for the inner code, and a Reed
Solomon code as the outer code. This is effective for a number of reasons.
Convolutional codes provide sufficient random error correction, but tend to generate burst
errors for low signal to noise ratio at the decoder output. Reed Solomon (RS) codes have
significant burst error correcting capacity, but do not handle random errors very well. In
this concatenated system, the inner convolutional code is used to correct the random
errors, and although the Viterbi decoder will produce short burst errors at its output, the
outer Reed Solomon code will be able to correct these bursts. The effects of these burst
errors can further be reduced by using an interleaver between the inner and outer
decoders. In addition, the Viterbi decoder can further improve the performance by
accepting soft decisions from the receiver.

The use of erasures is one way to increase the pérformance of Reed Solomon
codes. Erasure decoding can be thought of as the simplest form of soft decision. An

erasure indicates the reception of a signal whose corresponding symbol value is in doubt.

In some cases it is better to erase the symbol than to force a decision that may be
incorrect. Erasing a position gives information to the decoder as to the location of a

possible error. A block code with minimum distance d,;, can correct v errors and p

n

erasures as long as the inequality 2-v + p < d,;, is satisfied. Therefore, it is possible

for a t-error correcting RS code to correct more than t errors if errors are transformed into

crasures.

Information Reed Solomon N .| Convolutional
P Interleaver ' g
Source Encoder Encoder

Channel

L Reed Soiomon . Viterbi
Destination ' < Deinterleaver |«
Decoder Decoder

Figure 1.1 A concatenated coding system using inner convolutional code with Viterbi
decoding and an outer Reed Solomon code

In the concatenated system in Figure 1.1, the Viterbi decoder produces hard
outputs for input to the Reed Solomon decoder. The full capability of the concatenated
system is not fully realized because no reliability information is exchanged between the
inner and outer decoders. If the Viterbi decoder could be modified to generate reliability
information about its output, this information could be used to declare erasureé at the

input to the Reed Solomon decoder, thus improving the performance. One method that

can be used to accomplish this is the Soft Output Viterbi Algorithm (SOVA). The
method proposed by Hagenauer and Hoeher [4] uses information provided by the path
metrics in the Viterbi decoder to determine a reliability value associated with each
outgoing bit.

One application where this gain could be potentially useful is in NASA deep
space missions. The transmission of data over large distances, combined with limited
transmission power, results in low signal to noise ratio at the receiving end. This,

coupled with the fact that the data being transmitted is in the form of compressed images

where the required probability of error is 107>, leads to the need for a powerful coding
system [16]. The NASA standard for deep space communications is the (255, 223) 16
error correcting RS code as the outer code, and the rate 1/2 convolutional code with
constraint length K = 7. Interleaver depths of I = 2 to 8 have been used. The use of a
SOVA and an errors and erasures RS decoder can provide additional gains with no need
to modify the transmitting end. This enables erasure decoding to be used in existing
missions. This is particularly helpful for missions where unforeseen problems occur.
The Galelaio mission where the main antenna failed is one such instance. Every tenth of
a decibel gain that can be obtained in this instance is extremely helpful [15].

One method used to improve the NASA standard for deep space communications
through the use of erasures has been investigated by Paaske [7]. This method uses the
deinterleaver to provide information concerning the probable locations of errors in non-
decoded Reed Solomon codewords in an interleaving frame. In an deinterleaving frame

there are I Reed Solomon codewords, where I is the interleaving depth. If after

attempting to decode the frame, some of the RS codewords fail to decode, redecoding is
used. Erasures are declared using information prdvided by the error positions in the
successfully decoded RS codewords. Because the Viterbi decoder produces burst of
errors at it’s output, and the data is fed into the deinterleaver by row and output by
column to the Reed Solomon decoder, the bursts occur at the same symbols in
neighboring Reed Solomon words in the deinterleaver frame. If some but not all of the
~Reed Solomon words in the deinterleaving frame have been successfully decoded, the
positions of the errors in the decoded words are known. The knowledge of the error
positions can be used to declare erasures in the same positions in neighboring, yet to be

decoded Reed Solomon codewords.

11 Probosed research

The purpose of this report is to investigate the performance of the use of a Soft
Output Viterbi Algorithm used in a concatenated coding scheme with an errors and
erasures RS decoder. The reliability information provided by the SOVA will be
converted into Reed Solomon symbol erasures for the RS decoder. A table of least
reliable symbols will be compiled for each RS codeword, and systematically erased. In
addition, another method loosely based upon Paaske’s method will be investigated. This
method combines the SOVA output with a deinterleaver. The table of least reliable
symbols can be modified using additional information provided by the deinterleaver. If
-after the first decoding of a deinterleaving frame, there are less than I successful decoding

of RS codewords, redecoding is attempted. It turns out that not only does the SOVA

output produce burst errors, but the reliabilities for these error symbols are identical. This
information is used to modify the table of smallest reliabilities. The performance of these
codes will be obtained through the use of a computer simulation written in C computer
language. The convolutional code developed for use in this simulation is capable of
handling any code rate and constraint length. The Reed Solomon code, likewise, can
handle any symbol size and number of symbol errors corrected. The Reed Solomon
- decoder is an errors and erasures decoder. Although the codes developed are capable of
handling any size code, the NASA standard coding system will be investigated with
various interleaving depths. The simulation will be performed over a AWGN channel
using BPSK modulation and Raised Cosine FIR filters. The coding systems will also be
simulated over an ideal BPSK channel.

The structure of this report is as follows. Chapter 2 contains all of the background
information. Chapter 3 wili contain the details of the computer simulation. Chapter 4
will contain the strategy for declaring RS symbol erasures from the reliability information
generated by the SOVA, and the strategy for using the SOVA with the deinterleaver for
redecoding. Chapter 4 will also present the results of the simulation for both methods
investigated. Chapter 5 will contain conclusions, and ideas for possible future research.
The simulation flow charts are found in Appendix A and the C language source code used

to perform the simulations can be found in Appendix B.

Chapter 2

Background

Before discussing the two methods for erasure declaration presented in this report,
it is helpful to become familiar with some of the basic concepts of error control codes.
This chapter will contain lall of the background necessary to understand the various
elements used in the concatenated system. Encoding and decoding of Reed Solomon and
convolutional codes will be reviewed. In addition, the method used for errors and
erasures decoding in the Reed Solomon decoder will be discussed, as well as the method
used for generating the soft outputs in the Viterbi decoder. Block interleaving will be

briefly discussed, in addition to the redecoding method proposed by Paaske.

2.1 Reed Solomon codes

Bose-Chadhuri-Hocquenghem (BCH) codes are a powerful class of cyclic codes
which outperform all other block codes with the same block length and code length [9].
These codes are a generalization of Hamming codes to allow multiple error correction.
Reed Solomon (RS) codes are special subclass of BCH codes which utilize non-binary
symbols. The non-binary symbols used in RS codes are formed using finite field
arithmetic. Finite fields are sometimes called Galois fields and are denoted by GF(p),

where p is the number of elements in the field, and is a prime number.

2.1.1 Galois fields

A field is a set of elements in which we can do addition, subtraction,
multiplication, and division without leaving the set. Subtraction and division are defined
by the additive inverse and the multiplicative inverse. Additién and multiplication must
also satisfy the commutative, associative, and distributive laws. A field with a finite
number of elements is called a finite field. For example, GF(7) = {0, 1,2, 3,4, 5, 6} is a
field under modulo 7 addition and multiplication. Reed Solomon codes are codes with

symbols from the field GF2™), where GF2™) = {0,1,0,a?,...,0% "2}. The field

GF(2™) is an extension of the ground field GF(2), and the elements in this field can be

represented by an ordered sequence of m components, (a,, a,,a,,...,a,,), Or an m-

tuple. Each of the components are from the ground field GF(2). The 2™ elements of the
field GF(2™) are defined by an irreducible polynomial, or a primitive polynomial P(x).
Each element will satisfy the condition P(o) = 0. The primitive polynomials that define

the elements for m = 3 to 9 are as in Table 2.1. For example, the elements in GF(2") are

3

defined using the primitive polynomial 1 + x + x°. The elements either are the zero

element ‘0’, the identity element ‘1’, or some power of the base element . The element
o’ is derived from the primitive polynomial and the relationship P(at) = 0.
Po= o' +a+1 =0
3

or o =o+ 1.

All other elements are simply generated by multiplication by . The table repeats after

a™? (ie. 0o = 1, a’ a® = o etc.). The elements for GF(2") are as follows.

lraa = o
oo = o?
1 +a

3 _ 2
aa = o-(o+h)= o+
o-ot = oc-(oc+oc2)= l+o+0?
oo’= o (+o+a’) = 1+02

Table 2.1: List of primitive polynomials for m =3 to 9

P(X)

1 +x + x°

1 +x + x*

1 +x% +x°

1 +x + x°

1+ x* + x’

1+ x% +x7 +x* +x°

m
3
4
5
6
7
8
9

1+x* +x°

It is useful to represent these elements in a number of ways. The polynomial

representation is given by a, + a,a + a,0’ + ... + a_, 0™

m-

1

and the m-tuple

representation is given by (a,, a,, a,, ..., a_,). The elements and the various

representations for GF(8) are given in Table 2.2.

Table 2.2 Three representations for the elements of GF(8)
generated by 1 + x + x’

Power Polynomial 3-tuple
Representation | Representation | Representation
0 0 000)
1 1 (100)
o o 010)
o’ o’ 001)
o’ 1+« (110
o «+ol | O
o’ 1+ o + o (11D
o’ 1+ a? (101)

Multiplication and addition follow the rules of finite field algebra. Multiplication

of two elements is accomplished by adding the powers of the two elements modulo 2™ -1.

@rsmed? — 52 For addition of two elements in a

For example, in GF(8), a*-a’ = o
field, it is useful to use the m-tuple representation of an element. Consider a =

(a,, a;, a,, ..., a,,)andb=(b,, b,, b,, ..., b_,). The addition of a and b is simply

the addition of each component in the m-tuple representation,

namely(a, + b,,a, + b,,a, + b,, ..., a,, + b_,). Because each component of the

m-1

m-tuple is from GF(2), binary addition is used.

2.1.2 Generating Reed Solomon codes

A t-error correcting Reed Solomon code with symbols from GF(2™) has the

following parameters:

Block Length n=2"_1
Number of information symbols k =n-2t
Minimum Distance dpin=2t+1

The generator polynomial of a t-error correcting Reed Solomon code is:

g(x) =(X+0) - (x+0?)(x + o)

where g(x) has all of its roots and coefficients from GF(2™). The code generated from
g(x) is a (n, n - 2t) cyclic code. The code words are generated by:

c=u-G
Where G is the generator matrix in systematic form. Let us design a t = 2 error correcting

Reed Solomon code using symbols from GF(23) = GF(8). We know that:

Block length n=23-1 n=7
Information symbols k =n -2t k=3
The generator polynomial for this (7, 3) Reed Solomon code is given by:

gX)=(x+0)-(x+a®)- x+a’) (x+a*)
or

gx)=o' +o-x + x*+a’ x> +x*

= [aal o]

10

The generator matrix in non-systematic form is:

oc3ocloc10

GX)=10 o a 1 o 1

0 0 o o 1 o 1
To get the matrix into systematic form, we must convert the last three columns into an
identity matrix. This is accomplished by row operations. The result after doing so is:

(x3oc10(3100
GX) = |a® o® 1 a2 0 1 0

o> ot 1 a* 0 0 1
The information bits to be transmitted are u = [010 011 110]. From Table 2.2 we
know that these bits correspond to the symbols u = [a o’ o*] in GF(8). Using

¢=1-G, we obtain the code vector

or

c=[010 110 O11 O11 010 011 110]

The encoding of Reed Solomon codes can be also accomplished using a shift

register circuit. For a t-error correcting RS code, the generator polynomial is given by:

g(x) =(x+a)- (x+0?)(x +a?)

11

2t-1 2t

2
=gy *+ gX + g,X" + ...+ gy X + X

where g(x) has all of its roots and has coefficients from GF(2™). The generator
polynomial g(x) has been chosen so that it and codewords generated by it have zeros for

2 -t consecutive powers of o
gla') =0 forj=1,2,..2-t
The code generated from g(x) is a (n, n - 2t) cyclic code. The encoding of a non-binary
cyclic code is similar to the encoding of a binary cyclic code. Let
uX)=uy + WX + u,x> + o+ ou, x>
be the message to be encoded. In systematic form, the 2t parity check symbols are the

2t-1

coefficients of the remainder b(x)=b, + b,x + b,x> + --- + b, x which is
obtained by dividing the message polynomial u(x) by the generator polynomial g(x). In
hardware, this is accomplished by using the shift register circuit of Figure 2.1. The

encoder circuit works as follows. The k information symbols are first loaded into the

circuit. At the same time, the k information symbols are transferred directly to the output.

4 GATE

+
Message x2' - u(x) ﬁ“\}_}

7/
‘ .~ Code Word
Parity Check Digits

A

Figure 2.1 Encoding circuit for t error correcting RS code

12

When all of the information symbols have been read in, the 2t parity symbols are present
in the 2t registers denoted b,, b,, ..., b, |, gnd are then transferred to the output, thus
completing the systematic code word. This process can best be illustrated with an
example. Consider thé t = 2 error correcting (7, 3) Reed Solomon code. The generator
polynomial is

gx)=(x+0)- x+o?)-(x+ao*)-(x+a)

=o' +o-x + x> +a’ x* +x*
and it’s corresponding encoding circuit is given in Figure 2.2. The encoding of the

information symbols u = [o’ o’] is given in Table 2.3. The information symbols

@ (@ @)
by %[, ()l ()b (o

Message x2'-u(x) —

/’l,
Parity Check Digits

Figure 2.2 Encoding circuit for t = 2 error correcting (7, 3) RS code

are fed directly to the output to the encoding circuit. At t = 1, the first information
symbol ‘is fed into the encoding circuit, and the register contents are modified.
Information symbols are fed into the encoder until t = 3. At this time, the 4 parity

symbols are present in the registers b,, b,, b,, b,, and are sent to the output of the

encoding circuit. The encoded vector is equal to ¢ = [b, b, b, b, u, u, u,] or

Table 2.3 Shift register contents for the encoding of u = [a o’ o’]

t | Input Symbols Gate b, | b, | b, | b,
0 - - 0 0 0 0
1 u, = o’ o’ a° | ot | a | af
2 u, =a’ a’+at=0 |a*| 1 |a®]|af
3 u, = 0o o+a’=c’ | @ [’ | ot |a

2.1.3 Decoding of Reed Solomon Codes

Let r(x) = 1, + r,x + ... + r,,x"" be a received polynomial which is equal to
a codeword c¢(x) =c, +¢,X + ... +c_x""' corrupted by an error pattern
0 1 a-1 p y p
ex) =e, +ex + ... +e_x""

r(x) = c(x) + e(x)
The syndrome of the received polynomial is obtained by evaluating r(x) at the 2 -t zeros.
S; = r@’) = c(@) + e(@)) j=1,2,.., 2t
Any codeword c(x) will have zeros for these 2 -t powers of o, and thus, have a syndrome

'equal to zero. Therefore, the syndrome of the received word is equivalent to the syndrome

of the error pattern.

14

n-1
S, =)= e(@’) = D e (@) j=1,2,.,2-t (2.1)
k=0

i
If there are v errors in positions i,, i,, ..., i, , (2.1) can be expressed as

Sj = z eil(aj)iy
=1

=e 0" + e 0+ ... +ea” j=12..,2¢t
1 2 v

(2.2)

To reduce the notational complexity of (2.2), the error locations will be defined as

X, = o', and the error magnitudes as Y, = e, Wherel=1,2, .., v.(2.2) then becomes
Sl = YIXI + Y2X2 + ... + YVXV
S; = V,XP + X0 + ...+ Y, X3 (2.3)
S2t = YIXIZt + Yz)(zzt + ... + Yv)(\,2t

The error locator polynomial A(x) is defined as

A(x)

(1 - xX)(1 - xX,) - (1 - xX,)

L+ Ax +Ax> + .+ A x"7 + A X

v

(2.4)

where the roots of A(x) are the error locations X, X,, ..., X,. The coefficients of the
error location polynomial A, 1 =0, I, ..., v are related to the error locations by the

following equations

A, =1

A =X +X,+.. +X,, +X,

A, = XX, + XX, + .0+ XX, + XX, 55
A, = XXX, + XXX, + 0+ X LXK X, + X LX X (23)
AV = XIXZX? X\‘-IXV

15

(2.3) and (2.5) are related by Newton’s identities [11]
S] + Al - O

S3 + A]Sz + A281 .+ 3A3 = 0

(2.6)
SV + AISV_I + Azs\,_z + ... + AV_ISI + VAV = O

Syrl +ASy + A8, + ..+ A5, =0

Szt + AI.SZI—I + A282t—2 + ...+ AVS2[-—V = 0
(2.6) can be solved directly to obtain the coefficients of the error locator polynomial, but

such methods require a number of computations proportional to t* [2]. This makes a
direct solution of (2.6) not practical, especially for RS codes that need to correct a large
amount of errors. Berlekamp’s algorithip is much more computationally efficient method
of correcting RS codes. The complexity increases linearly with t, so codes correcting

large numbers of errors can be implemented [11]. Berlekamp’s algorithm first finds a
minimum degree polynomial A"’ (x) whose coefficients satisfy Newton’s first identity. -
This polynomial is tested whether the second Newton identity is also satisfied. If it does,

then A? (x) = A®(x). If not, then a correction term, or discrepancy is added to A (x)
~ to form A®(x) such that A®(x) satisfies the first two Newton’s identities. | Next
A®(x) is tested whether it satisfies the third Newton’s identity, etc. This process
continues until A®”(x) is obtained. Then A(x) = A®"(x). If there are less than t errors,

A(x) produces the error pattern.

Massey’s shift register based interpretation of Berlekamp’s algorithm is known as
the Berlekamp-Massey algorithm {2, 11]. The Newton’s Identities in (2.6) can be

expressed in an alternate form
S;= - X AS;; j=v+lL v+, ., 2y, 2.7

Massey [17] recognized that (2.7) can be represented physically using a linear feedback

shift register (LFSR) as shown in Figure 2.3.

N

AN
w»n
|

Sj-v Sj—v+1 Sj—v+2 1

A0 A A2 A X) -AH(XB

NN N S,
(D) (D (D> A D———

Figure 2.3 LFSR interpretation of (2.7)

The output of the LFSR will be the 2t syndromes S|, S,, ..., S,,, and the register taps
are the coefficients of the error correction polynomial A(x). The LFSR can be designed
to generate the known sequence of syndromes such that A(x) is of the smallest degree.
The procedure for finding the taps of the LFSR is similar to Berlekamp’s algorithm. First
a connection polynomial T(x) = 1 + Ajx + ... + AL_le_l + ALxL is forfned

whose coefficients are the taps of a length L LFSR. The Berlekamp-Massey algorithm

first finds T(x) of length L = 1 such that the first output of the LFSR is the first syndrome

17

S;. The second output of the LFSR is compared to the second syndrome, and if the two
are not equal then the connection polynomial is modified using a discrepancy term. If the
two are equal the taps remain the same. The third output of the LFSR is compared to the
third syndrome, and if they are not equal, the taps of the connection polynomial are
modified. This process continues for 2t iterations. At the end of the 2t iterations, the taps

of the LFSR specify the coefficients of the error correction polynomial A(x). The details

of the algorithm are presented below.

2.1.3.1 Berlekamp-Massey Algorithm [2]
1. Compute the syndrome of the received codeword S; = r(o)) .
2. Initialize the following variables
Error locator polynomial A(x) = 1 N
Index r=0
Temporary storage B(x) =1
Shift register length L =0
3. Setr=r+ 1.

4. Compute the r th discrepancy, which is the error in the next syndrome
L
A, = DAS,_,
j=0

5. If A, = 0,set B(x)= x-B(x) and go to step 11.
6. Compute the new connection polynomial

T(x) = A(x) - A, -x-B(x)

18

7.1f 2-L > r - 1,set B(x) = x-B(x) and go to step 10.
8. Store old shift register after normalizing
B(x) = A, "'A(x)
9. Update shift register length L =r- L.
10. Update the shift register
A(x) =T(x)

11. Ifr< 2-t, go to step 3.
12. If deg A(x) # L, there are more than t errors. Stop.
13. Determine the roots of A(x). The inverses of these roots are the error locations
X, X, n X,
14. Determine the corresponding error values Y,, Y,, ..., Y, .

The simplest method to find the roots of A(x) in step 13 is by using a process
known as a Chien Search. This is a trial and error approach which computes A(o.’) for j

=0,1,..2™-2. If A(a’) = 0, then o’ is a root of A(x). The error magnitudes can be

calculated by using the Forney algorithm[3, 11]. First, compute a syndrome polynomial

S(x) from the 2 -t syndromes.
2-t)
S(x) =1+ » Sx 2.7)
j=1

The error evaluator polynomial €(x) can be computed by the product of the syndrome
polynomial S(x) and the error locator polynomial A(x).

Q(x) = SX)- A(x) mod x** (2.8)

19

Next, compute the derivative of the error locator polynomial A’(x).

Ax) = Y X JTA - xX) (2.9)
i=1 j=i
The error magnitudes Y,, Y,, ..., Y, can then be calculated using the Forney Algorithm.
X, "X,
Y, = —‘—(—]‘—) I=1,2,..,v (2.10)
A(X,)

For example, let r(x) = o + alx + otx? + atx? + a’x* + a’x® + o’x® be a

code word corrupted by an error pattern e(x). The first step in decoding is to compute the

syndrome of the received polynomial.

wn
H

r@) = o + oo + oo’ + ot + afat + oo’ + ofol
S, =1

S, =r@?) = a+ a’a’ + a‘a’ + o*a’ + ool + o’ + oo’
2

S, = a

S, =r(@’) = a + a’a’® + a*a® + o'a’ + afa? + o’a’® + ale'®

S, =1

S, =re®) = a + oot + o' + afa'? + afa' + o’o® + ofa

S, = af

The syndrome polynomial is

2-t
Sx) =1+ 2Sx'=1+x+a?+x" +a’x’. (2.11)
ji=1

Next, the Berlekamp-Massey algorithm is used to find the érror locator polynomial A(x).

The results of the computations for each iteration of the algorithm are given in Table 2.4.

20

Table 2.4 Results of the computations for each iteration of the
Berlekamp-Massey algorithm

T A, T B(x) A L
0 - - 1 1 0
11 L+x 1 1+x . 1
2 o 1 + o’x X 1 + a’x 1

3 0 l+a’x+a’x? a?+oa'x +o’x+a’x? 2

4 0 1+ o’x + o’x o> +0o*'x 1+o’x+a’x? 2

The error locator polynomial is found to be A(x) = 1 + o’x + o’x%. The roots of
A(x) are o° and o, and the inverses of these roots give the error locations X, = a and
X, = o*. The error evaluator polynomial is
Q(x) = SMWAX) = (1 + x + o’x* + x> + o’xH)(1 + o’x + a’x?)
=1+ a’x + o’x’
and the derivative of the error location polynomial is A’(x) = . The error values can

be calculated using (2.10)

a(l + a’a’® + o’a'?) ol + o’ +ab) S
Yl = = = QO

o’ o’
_a'd+ofa’ +0’a’) at+oal+at)
Y2 -) - 3 =0
o o

21

The error polynomial is e(x) = o.°x + o’x*, and the corrected polynomial is
rx) +e(x) = (o + o’x + a*x? + a*x? + afx* + a’x’ + a’x®) + (a’x + a’xh)

=o + o’x + a*x? + o*x? + oax* + o’ + o’x°

2.1.3.2 Errors and erasures RS decoder
In order to correct both errors and erasures, certain modifications to the
Berlekamp-Massey algorithm will need to be made. Suppose that a received polynomial

r(x) contains v errors in locations i, i,, ..., i and p erasures in locations
ji» Ja» «++» J,- An errors and erasures Reed Solomon code can correct v errors and p
erasures as long as 2-p + v < d,_ . where d__ is the minimum distance of the code.
The error locations are given by X, = a'* k =1, 2, ..., v and the erasure locations are
givenby U, = a”" 1=1,2,..,p. The erased positions are known at the beginning of

the decoding operation, and are filled with zeros before the decoding begins.

2.1.3.3 Berlekamp-Massey algorithm for errors and erasures [2]

1. Substitute zeros into the erased positions in the received word.
2. Compute the syndrome of the received codeword S i = r(dj) :
3. Initialize the following variables

Errors and erasures locator polynomial A(x) = 1

Index r=0

Temporary Storage B(x) =1

22

Shift register length L =0

4, Setr=r+ 1.

W

@)

~J

. Ifr>p gotostep 10
CAX) = AX)-(1 - U, -x)

. B(x) = A(x)

8. L=L+1

* 9. Gotostep 4

10. Compute the r th discrepancy, which is the error in the next syndrome

I1.
12.
13.

14.

15.

16.

17.

18.

A = iAJ’Sr—j
j=0

If A, = 0,set B(x) = x-B(x) and go to step 11.
Compute the new connection polynomial T(x) = A(X) - A, -x-B(x)
If 2.L >r + p - 1,set B(x) = x-B(x) and go to step 16.
Store old shift register after normalizing

B(x) = A,7'A(X)
Update shift register length L =1 - L'+ p.
Update the shift register

A(X) = T(x)

Ifr<2-t,gotostep 4.

Ifdeg AX)#L,2p+v>d,, . Stop.

23

19. Determine the roots of A(x). The inverses of these roots give the error locations
X, X, ..., X, and the erasure locations U,, U,, ..., U_.
20. Compute the error evaluator polynomial

Q(x) = S(x)- A(x) mod x***!

21. Use the Forney Algorithm to compute the error values

X X, !
Y, = —k—(f—l) i=1,2,..,v (2.13)
A X
and the erasure values
U, QU, !
Y, = —‘—-(—‘1—) i=L2,..p (2.14)
' AU,

For example, let r(x) = o + o’x + £x2 + o*x3 + afx? + x5 + a’x® be a code

word corrupted by an unknown error pattern e(x) and a erasure pattern
f(x) = fx* + fx* with known positions and unknown values denoted by ‘. The first

step in decoding is to insert zeros into the erased positions and compute the syndrome of

the received polynomial.

o) = o + a’e + oo’ + alat + ool

S, =

S, =«

S, =r@®) = a+ o’a’ + ‘o’ + ool + ola'?
- 6

2 - a

S, =r@’) =a +a’a’ + a‘c’+ afa? + a’a’®

S, =r(*) = a + ot + a*a” + o't + oo

24

The syndrome polynomial is

21
Sx) =1+ XSx =1+ ax + a’x* + a'x’ .
Iy

Next, the modified Berlekamp-Massey algorithm is used to find the error locator
| polynomial A(x). The contents of the variables for each iteration of the algorithm are

given in Table 2.5.

Table 2.5 Results of the computations for each iteration of the errors
and erasures Berlekamp-Massey algorithm

r A, T(x) B(x) A(X) L

0 - - 1 1 0
- - 1 + o’x I+ o’x 1
2 - - 1 + o’x + x2 1 +o'x + x? 2
3 o 1 + ox* + o’x® ot + x + a‘x? 1+ a’x? +a’x® 3
4 o 1 + afx + o*x® a*x + x* +a*x’ 1 +oafx +a'x? 3

The error locator polynomial is found to be A(x) = 1 + a’x + a*x®. The roots of

A(x) are o, o’, and o’. The inverses of these roots give the error location X, = a*

and the erasure locations U, = o’ and U, = o’ , which were known at the beginning
of the decoding operation. The error connection polynomial is

Q(x) = SMAX) = (I + ax + ox? + a’x*)1 + a’x + a*x?)

25

=1+ a’x + o’x? + o’x’
and the derivative of the error location polynomial is A’(x) = o® + o*x?. The error

value can be calculated using (2.13)

o'(1 +o’o’ + o0’ + a’x’) o'l +a+ o+ a) .

Y =
: of + ato’ af + o

and the erasure values by using (2.14)

v - (I +o’a’ + o’a® + a’x”) a1+ o'+’ +at) o
: a® + oo’ of + 1

y - L +o’a’ +a’ef +a’x) U +1+at v _ o
= = =

a® + ool a® + o

The error and erasure polynomials are e(x) = o’x* and f(x) = a*x> + o’x® and the
corrected polynomial is

r(x) +e(x) +f(x) = (ot + o’x + a*x’ + a®x* + a’x®)+(a’x) +(a*x? + o’x’)

=+ o’x + a*x? + oa*x® + obx* + x5 + a’x

6
2.2 Block Interleaving

Interleaving is commonly used to break up correlated errors into random errors by
rearranging the symbols. This is done because most block and convolutional codes are
optimal for random errors. Interleaving causes correlated errors to be spread out over
time, and then the coding system can handle the errors as if they were random. There are
two major types of interleaving, block and convolutional. Block interleavers are used in

conjunction with the concatenated systems in Figure 1.1, and will be the only method

26

discussed here. Because the interleaver is to be used in conjunction with the symbol
based Reed Solomon encoder and decoder, the interleaving will be done on a symbol
level, rather than on a bit level. Block interleavers can be implemented using an MxN
matrix. The symbols are fed into the matrix by column, and fed out by rows. At the
deinterleaving stage, the symbols are fed into the matrix by row, and output by column.
Consider this simple example. The sequence {0, 1, 2, 3, ..., 11} will be fed into a 3x4
block interleaver by column

0 36 9

1 4 7 10

2 5 8 11
The interleaver then outputs the data by row. The output sequence is {0, 3, 6,9, 1, 4, 7,

10, 2,5, 8, 11}. The deinterleaving is accomplished by entering the sequence by row, and

outputting by column. The deinterleaved sequence is {0, 1, 2, 3, ..., 11}.

2.2.1 Redecoding of deinterleaving frame using erasure

Paaske [7] has developed a strategy to declare Reed Solomon symbol erasures
using information provided by the deinterleaver. In order to understand the erasure
declaring procedure discussed later in the report, and for comparison purposes, an
overview of Paaske’s metﬁod is presented below.

Because the Viterbi decoder produces burst errors at it’s output, and the
deinterleaver spreads these bursts over several codewords, it is highly likely that the burst
errors will occur at identical positions in neighboring Reed Solomon codewords (RSW)

in each deinterleaving frame. The output of the Viterbi decoder is fed into the

27

deinterleaver by row, and then the columns are fed to the RS decoder as in Figure 2.4.
Each column of the deinterleaver makes up a Reed Solomon codeword. Assume after
errors only decoding of each of the RSW, that some of the codewords in the deinterleaver
frame were decoded correctly (< 16 errors in the codeword) and some were undecodable
(> 16 errors in the codeword). Because a RSW with v errors and p erasures can be
corrected if 2-v + p < d,,, declaring erasures and redecoding the deinterleaving
frame may provide improvement. Th}is improvement is highly dependent upon if the
declared erasure hits an error. Erasures that hit errors will be called good erasures (GE)

and ones that do not hit an error will be called bad erasures (BE).

From Viterbi decoder

\ 4

A4

To R|R|[R |R R
RS decoder | g S |S S) S 255 RS
WiIWwI[W w W | symbols

—
—s
~—
—
o
—
—_——~
wo
~—
~_~
~
~—
—~—
P
~—

K— Interleaving depth [——

Figure 2.4 Typical deinterleaving frame

28

Paaske’s method for declaring erasures in the de-interleaving frame makes use of
the bursty nature of the Viterbi decoder output. Because the data is fed into the
deinterleaver by row, the bursts will span over many RSW as in Figure 2.5. Let RSW(i)
denote the i th codeword in an interleaving frame. It should be noted that a burst of
length 1 at symbol k starting at RSW(i;) will affect symbol k in RSW(i, +j) for i; +j<I
and symbol k + 1 in RSW(il +j-I) for i; +j>1I. If codeword RSW(i) has been correctly
decoded, the positions where errors have occurred will be known. It is highly probable
that the same symbols in the neighboring codewords will also be errors. Paaske
developed 4 erasure declaring procedures (EP1-EP4), three of which declare erasures in
the non-decoded RSW using information provided by the decoded RSW in the

deinterleaving frame. A brief description of the procedures is presented below.

Symbol
Number

k+1

RSW(i) RSW(i,)

= Symbol error

Figure 2.5 Typical burst error in a deinterleaving frame

EP1: Assume that two RSW have been decoded, and both contain errors in

position k. Let RSW(i;) and RSW(i,) be two correctly decoded RSW with an error in

29

position k in both as shown in Figure 2.6. Also assume that RSW(i, +1) to RSW(i,-1)
have not been decoded. It is highly probable that position k is an error in these
undecoded words, and is erased. These erasures are classified as double sided erasures
(DSE) and the probability that a DSE is a GE is 0.96 [7]. An example of a DSE is shown
in Figure 2.6.

EP2: Assume that a codeword RSW(i) has been successfully decoded and that
RSW(i - 1) and RSW(i + 1) have not been decoded. For all error positions in RSW(i)
erase the same positions in RSW(i - 1) and RSW(i + 1). These are called single sided
erasures (SSE) and are GE with a probability of 0.60 [7]. An example of SSE declaration
is given in Figure 2.7 where RSW(i) is the decoded word with errors in positions k;, k,,

k3, and k4. Note that the SSE declared in RSW(i + 1) at positionk, and RSW(i - 1) at

position k5 do not hit symbol errors, and are therefore BE.

Symbol
Number

il il +1 i2-1 i2
RSW

= Symbol Error . DSE = Double sided E = Error corrected ir
erasure decoded word

Figure 2.6 An example of a double sided erasure declaration

30

EP3: Assume that RSW(i) has been decoded and contains e errors, and RSW(i - 1)
and RSW(i + 1) have not been decoded. Also assume that s; DSE can be obtained if EP1
is used. The s; DSE are combined with s, SSE chosen from the e - s; possible SSE.

The optimal choice for the number of SSE s, is treated in [7].

Symbol
Number

k+1p b}

ks, SSE

i-1 i 1+ 1

RSW

= Symbol Error SSE = Single sided E = Error corrected in
erasure decoded word

Figure 2.7 An example of single sided erasure declaration

31

EP4: This procedure assumes that one of the non-decoded RSW has 17 errors.
Two symbols are selected and make erasures. If there are 17 errors, the probability that
an erasure 1S a good erasure is 1/15.

The erasure declaring procedure proposed by Paaske [7] involves the following
steps:
1) Try decoding each RSW in the deinterleaving frame using errors only decoding.

2) Set iy equal to the number of successfully decoded RSW.
3) If iy =1, go tostep 9.

4) If iy =0, go to step 8.

5) Attempt to decode each non-decoded RSW using EP1.

6) Attempt to decode each non-decoded RSW using EP2.

7) Attempt to decode each non-decoded RSW using EP3.

8) Attempt to decode each non-decoded RSW using EP4.

9) Stop.

For steps 5) through 8), decoding is attempted on the first non-decoded RSW
using the EP specified in the step. If this decoding attempt is successful, then proceed to
step 2). If not successful, then try the next non-decoded RSW using the EP specified in
the step. This continues until either one of the non-decoded RSW is successfully
decoded, or all non-decoded RSW have been tried and none are successful. If all non-
decoded RSW have been attempted using the given EP, and there are no succéssfully

decoded RSW, then proceed to the next step. Erasure procedures EP3 and EP4 involve

32

selecting erasures in a systematic way. This step is repeated on each codeword until

either a successful decoding of the codeword, or a maximum number of trials T,,, has

been attempted. In the simulations conducted by Paaske, T,,, = 500 trials.

2.3 Convolutional codes

Convolutional codes are fundamentally different than block codes. Block codes
* divide the information sequence into segments of length k, and map these k bits onto a
codeword of length n. Convolutional codes on the other hand convert the entire data
stream into one code word, regardless of the length of the information sequence. A (n, k,
m) convolutional encoder has k inputs and n outputs, where k < n and both k and n are
small integers. The memory order m should be made large in order to achieve a high

degree of error correcting capability [6].

2.3.1 Convolutional encoder

Convolutional codes are implemented using a linear feed forward shift register
circuit. A typical encoding circuit is giveh in Figure 2.8, and will be used as a model for
discussing convolutional encoders and the Viterbi decoder. The information sequence
u = (uy, u,, u,, ...) is fed into encoder circuit k bits at a time. The memory elements
afe tapped and the bits contained in memory are added together using modulo-2 adders to

| ©

obtain a pair of output data streams v© = (v, v,® v,?) and

(

D _ gy (1 ((
v o= (v, P, v,

, V, D ...). These output sequences are combined to create the final

codeword v = (v, v, v,Ov,

33

The constraint length K is defined as the maximum number of output bits that can
be affected by any input bit. Since each information bit stays in the encoder for m + 1
time units, and during each time interval the encoder produces n output bits, the

constraint length is definedas K=n-(m+1).

Figure 2.8 A (2, 1, 2) convolutional encoding circuit

The structure of convolutional encoders can be expressed in a number of ways.
One of these ways is using the impulse response of the encoder. The impulse response of

the encoding circuit is obtained by letting the input u = (1000 ...) and observing the

output sequences as u enters the encoding circuit. An encoder with memory m generates

an impulse response of length m + 1. The impulse response, also known as the generator

) 0)

sequence, is written in the form g = (g, g,, g,, ..., g,) and

g” = (g,", &, 8", ... g,"). For the encoder in Figure 2.8 the generator

sequences are g = (101) and g™ = (1 11). The two encoder output sequences can

34

be thought of as a linear convolution of the information sequence with the impulse
response. The encoding equations can be written as

(0)

v® = ux* g@ (2.15a)
vl = ux g® (2.15b)
where * denotes discrete convolution using modulo-2 operations. The output at time t =1

can be written as
. m .
v, = zutéi - gy
i=0 -

=u gV +u_-gV+u_,-gY+ ... +u__-g @ (2.16)
For the encoder of Figure 2.5, (2.15) reduces to

v, =u, @ u,, (2.17a)

T

v =u ®u._, ®u_, (2.17b)

T

where @ denotes modulo-2 addition. The encoding of the information sequence
u=(101101) is illustrated in Table 2.6. At time = 0, the contents of memory are

initially set to zero. At time = 1, the first information bit is fed into the encoder, and the
output of the encoder is obtained by using (2.17). This process continues until all of the
information bits have entered into the encoder. At this point, information bits are still
contained in memory. Two more clock cycles are needed to move the last bits through
the encoder. (k- m) zeros are fed into the input to move the last information bits through

the encoding circuit. The encoded sequence is v=(11 01 00 10 100001 11).

35

2.3.2 Decoding of Convolutional codes
The Viterbi algorithm is a widely used method for the decoding of convolutional
codes. The algorithm was developed by A. J. Viterbi in 1967 [6], and is a maximum

likelihood decoder.

Table 2.6 Encoding of the information sequence u = (101101)

Time | Input | m | m, | v | y®
0 - 0 0 - -
. 1 1 0 1 1
2 0 0 1 0 1
3 1 1 0 0 0
4 1 1 1 1 0
5 0 0 1 1 0
6 1 1 0 0 0
7 - 0 1 0 1
8 - 0 0 1 1

2.3.2.1 State Diagram

For every encoding circuit, there will be a corresponding state diagram. An

encoder with memory m will have 2™ possible states, illustrating the contents of the shift
ry p g

registers in the encoding circuit. There are k binary inputs to the encoder for each clock

cycle, which results in 2% branches entefing and exiting each state. The process details

used to create the state diagram are given in Table 2.7. For the encoding circuit of Figure

36

2.8, there will be 4 states, and 2 branches entering and exiting each state.

diagram for the circuit in Figure 2.8 is given in Figure 2.9.

Table 2.7 Development of the state diagram

Initial State | m, m, |[Input u | Outputv | New State
S, 0 0 0 00 S,
S, 0 0 1 11 S,
S 1 0 0 01 S,
S, 1 0 1 10 S,
S, 0 1 0 11 S,
S, 0 1 1 00 S,
S, 1 1 0 10 S,
S, 1 1 1 01 S,

Figure 2.9 State transition diagram for the encoder in Figure 2.8

37

The state

2.3.2.2 Trellis Diagram

A trellis diagram is a state diagram extended to include the passage of time. The
encoding of a sequence of data corresponds to a unique path through the trellis diagram.
The trellis diagram for the state diagram in Figure 2.8 is shown in Figure 2.10. If an
information sequence of length k- L bits is fed through an encoding circuit, where L is
the total number of k bit codewords, the resulting codeword will be of length

N = n-(L +m)bits. Each of the 2 code words of length N is represented by a unique

path through the trellis.

1/01 KSLI/(H /s\ 1701 fs\ 1701 KS\ 1701
3 3 3 ;

0/01

Figure 2.10 Trellis diagram (based on the encoder in Figure 2.8)

The convolutional coding problem is shown in Figure 2.11. Assume an information

sequence u=(ug, Uy, ..., uy) of length k-L bits is encoded into a code word

38

Y=¢> ¥Yi» -+ » Yiams) Of length N = n-(L +m) bits. A noise-corrupted version of

the transmitted sequence r is received where r and y have the following form

— (- (O (n-1)
r=(r,", 1, .., I ,

(n-1)
O B s s T)

(0 n)

y = (}’0 > yO 22 yO(n_l)’ yl ’ YI“)’ ey YL+m-l(n-l)) .
4 y r y’
Convolutional ’O Convolutional
Encoder i Decoder —>
Noise

Figure 2.11 Convolutional coding system

The Viterbi algorithm generates the estimate y’ of the transmitted sequence r which
maximizes the conditional probability p(r!y). Assuming the channel is memoryless,

each received bit will be independent of the noise process affecting all of the other bits.

Therefore p(r! y) can be expressed as

L+m-1

priy) = [T0p@®1y, @) per 1y, - p(r, "1y, "))

i=0

L+m-1 n-!
= H (H p(ri(“ | yim) (2.18)
i=0 =0
The log-likelihood function is obtained by taking the logarithm of each side of (2.18).
L+m-1 n-l)]
logp(rly) = Y, Y logp@¥1y,?) (2.19)
: i=0 j=0

39

This is done because it is, in general, easier to implement summations rather than
multiplication in hardware. The log likelihood function, log p(rly), is called the Path
Metric associated with the path y and is denoted M(r | y). The terms log p(r,” ly,?) are
called Bit Metrics
M5 1y,9) = log p(r,? 1y, %) (2.20)
In the hardware implementation of the Viterbi decoder, it is more convenient to use
positive integers for the metric values rather than the actual bit metrics. This can be
accomplished by using
M50 1y;9) = a-[log p(r;? 1y; D) + b] @21
where a and b are chosen to obtain small, positive integer values for the metrics which

can be implemented easier in hardware.. The path metric for a codeword y is then

calculated as

L+m-1 n-1{

Mriy) = Y D Mr2ly,?). (2.22)

i=0 j=0

The k th branch metric for a codeword y is defined as the sum of the bit metrics

n-1
M@, ly,) = Y Mr P 1y, D). (2.23)

=0
The k th partial metric for a path is obtained by summing all of the branch metrics for the

first k branches the path follows.

k-1
M(rly) = 3 M ly;) (2.24)
i=0 '
k-1 n-i))
=Y Y M1 1y,?). (2.25)
i=0 j=0

40

The Viterbi Algorithm finds the path through the trellis with the largest path metric,

which is the maximum likelihood estimate y’ of the received word r. At each time

interval the algorithm, computes the partial metrics entering each state. The largest
metric is chosen as the surviving path at each state, and all other paths entering that state
are discarded. This process is continued until the end of the trellis is reached. The final

surviving path is the maximum likelihood estimate y of the codeword.

2.3.2.3 The Viterbi Algorithm [6]

1. At time t = m, compute the partial metric for the single path entering each
state. Store the value of this metric at eaéh state.

2. Increase t by 1. Compute the partial metric for the path entering each state.
This will be equal to the branch metric entering the state plus the surviving metric from
the previous state. Out of the 2* paths entering each state, the path with the largest metric
is chosen and the remaining paths are discarded. The metric of the surviving path is
stored at each state.

3. If t <L + m, repeat step 2. If not, stop. At time t = L + m, all paths have
returned to the all zero state. There will be only one path remaining, and this path is the

maximum likelihood estimate y’.

2.3.2.4 Hard Decision Decoding
In hard decision decoding, the receiver determines whether a zero or ohe was

transmitted. These zeros and ones are the input to the Viterbi decoder. If the channel is

4]

memoryless and if the probability of a bit error is independent of the transmitted bit, then
the channel is said to be a binary symmetric channel (BSC). The BSC is shown in Figure
2.12 where p is the probability that a bit is in error. The conditional probabilities for the

BSC are given in Table 2.8.

1-p
0 2 1
Transmitted Received
Symbol p p Symbol
1 3 0
I-p

Figure 2.12 Binary symmetric channel model

Table 2.8 Conditional probabilities for BSC

p(ri(j) | yi(j)) yi(j) =0 yi(j) =1
¥ =0 1-p P

1

Y =1 p 1-‘p.

For the BSC, choosing a=[log, p - log,(1-p)]"" and b=-log,(1-p) in
(2.21) yields the bit metrics in Table 2.9 [6]. The maximizing of the bit metrics
M(r, 1y,9) coincides with the minimization of the Hamming distance. For the BSC

case, the path metric is simply the Hamming distance d(r, y), and the Viterbi algorithm

will choose the surviving paths as the ones that have the minimum partial path metrics.

42

Table 2.9 Metric table for BSC

M(rA(j) [y'(.i)) y_(j) =0 y.(j) =1
r=0 0 1
r=1 11 0

Consider the information sequence u = (10110 1) that was encoded using the (2, 1,

2) convolutional encoder in Figure 2.8. The encoded sequence is y = (11 01 00 10 10 00
- 01 11). If this sequence is transmitted on a BSC, and no errors occur in the transmission,
r =y. The decoding of this received sequence is illustrated in Figure 2.13. Note that the
final path has a path metric value of 0. The decoded sequence is (1 0 1 1 0 1) which is
obtained by tracing back the maximum likelihood path noting the input bit associated

with each branch.

3 0 2 3
1701 fs'\ 1/01y, 2 fs\ 1701 fS\
N 3 3

~ ’@

P

0/10

r= 11" 01 00 10 10 00 01 11

Figure 2.13 Hard decision Viterbi decoding
of r=(11010010100001 11)

43

If the same sequence y = (11 01 00 10 10 00 01 11) is transmitted and the received
sequence is r= (11 1100100000 T1 11) where the erroneous bits are denoted with

the bar over the bit, the decoding is illustrated in Figure 2.14. The decoded sequence is (1
0 110 1), which is identical to the information sequence. The decoder corrected the

three errors in the received sequence.

Figure 2.14 Hard decision Viterbi decoding
of r= (111100100000 11 11)

2.3.2.5 Soft Decision Decoding

Hard decision decoding simply assigns a zero or a one at the receiver, utilizing
only two decision regions. Soft decision decoding makes use of g-bit quantization which
Vresults in multiple decision regions ranging from a “strong-one” to a “strong-zero”.
Using soft decisions results in approximately 2 dB gain over hard decision Viterbi

decoding [9]. A discrete memoryless channel (DMC) is shown in Figure 2.15. The

44

DMC is completely described by a set of transition probabilities between a zero or a one

being transmitted and one of Q = 29 levels at the receiving end. It has been found that

p(0,10)

Transmitted Received

Symbol Symbol

>

Figure 2.15 DMC channel model for Q = 4 levels

using 8-level quantization results in only a 0.25 dB loss when compared with using
infinitely fine quantization [11]. Consider the transition probabilities given in Table 2.10.
The modified metric table is given in Table 2.11, and is obtained by using (2.21) with b
=l and a=17.3. In choosing a and b, a is typically chosen to obtain a metric value equal
to zero for the smallest metric value. The metric values obtained by using (2.20) are, in
. general, real valued. Simply rounding these values off to the nearest integer may lead to
round off errors. The scaling factor b in (2.21) is chosen to make the metrics as close as
possible to being integer values, while keeping the values as low as possible. This will

reduce some of the error that may occur when rounding off the metric values.

45

If the same codeword y = (11 01 00 10 10 00 Ol 11) is transmitted over the
channel, and the received sequence is r= (1,1, 0,1, 0,0, 1,1, 1,0, 0,0, 0,0,0,0,),
then the decoding process using soft decision Viterbi decoding is illustrated in Figure
2.16. T he decoded sequence isu = (1 01 10 1), which is identical to the information

sequence that was transmitted.

Table 2.10 Conditional probabilities for DMC

p(ri(j) [yi(j)) yi(j) =0 Yi(j) =1

ri‘“ = 0] 4 1
Y =0, 3 2
V=1, 2 3
.9 = 1l 1 4

Table 2.11 Metric Table for DMC

M(tP1y,9) |y®=0]y® =1
r =0, 10 0
r=0, 8 5

r=1, 5 8

r=1, 0 10

2.3.2.6 Truncation length
In practice, information sequences are very long. It is not practical to wait until
the entire sequence is received to begin decoding. This would result in long delays and

require large amounts of storage. It has been found that a decision can be made on the k

46

information bits that were received (t - 8) time units before, where 8 is called the decision

depth, or truncation length. If the truncation length is made 4 to 5 times the constraint

length, there will be very little loss in performance [10].

]

0/00 16

Figure 2.16 Soft decision Viterbi decoding of
r= (1,1, 0,1, 0,0, 1,1, 1,0, 0,0, 0,0,0,0,)

The implementation of the truncated Viterbi decoder makes use of 2™ shift
registers, each of length k-8. At any time t, there are 2™ surviving paths, with one
surviving path terminating in each of the 2™ states. For each surviving path, the only
information that needs to be stored are the information bits associated with that path. No
information about the route the path took is necessary, just the information (output) bits
associated with that path. At time t, n bits are input into the decoder. The branch metric
is calculated, and the surviving path is chosen as the path with the largest metric, as in the

standard Viterbi decoder. The path information for each state at time t is equal to the

47

previous state at time (t - 1) shifted k bits to the left. The k information bits associated
with the surviving branch at time t are then shifted into the register. Consider the Viterbi
soft decoding example given in Figure 2.16. For a decoding depth of & = 5, the shift
registers, surviving branches, and metric values are shown in Figure 2.17. At time t = 0,
the shift registers are empty. At each time interval, the survivor branch is chosen, and the
contents of the shift register at the pervious state are copied to the new state, shifted to the
left, and the information bit associated with the branch is inserted into the register. This
process continues until the register is full (i. e. t 2 §). At this point, the path with the
highest metric is chosen as the surviving path. Only one bit is output at a time, so this

corresponds to the leftmost position in the shift register, which was the information bit

18 33 69 74 92
S, “ ! m m I YRR DIt
0
38 30 69 87 99
S, : [- 10] [--011] l 10110 01110
0
i
|
18 15 56 59 84 105
S <01 Lotol 01101
n] ERIH SR W BTN 1001] “ |
1 | |
0 5 . 15 43 53 177 95
S, [----- 0 {0} y {---nnl m v ‘1|o|on]—"-{o|uoo]
t=0 t=1 t=2 t=13 t=4 t=S5 t=6

Figure 2.17 Shift register contents for the soft decision decoding
in Figure 2.16

48

inserted t - & time units before. ‘In Figure 2.17 at t = 5 = §, the path with the highest

metric has a path metric of 87, and terminates in state S,. The leftmost bit in the shift
register is equal to 1, and is the output for this time interval. Now, since t > §, the

decoder can take in n bits, compute the path metric and determine the surviving path for
each state. The decoder then chooses the path with the maximum metric, and outputs the
leftmost bit. At time t = 6 in Figure 2.17, the path with the highest metric has a path

metric equal to 105, and terminates in state S,. The leftmost bit in that shift register is 0,

and is the output bit. This process continues for the remainder of the decoding operation.

2.3.3 Soft Output Viterbi Algorithm

The Viterbi algorithm can be modified to give either a reliability value or a
probability that a given bit is correct. The method used to implement the Soft Output
Viterbi Algorithm (SOVA) is based upon Hagenauer‘and Hoeher’s method [4]. For
simplicity, this discussion will only consider convolutional codes where k = 1. The

reliability of a binary random variable can be defined in terms of a log-likelihood value

Prob(u=1)
= log—r2u=1) 26
Lu) = log o a=0) (2.26)

where the sign of L(u) corresponds to the hard decision (i.e. if L(u) >0,u =1 and if L(u)
< 0, u = 0) and the magnitude IL(u)l is the reliability of this decision. The larger the

magnitude, the greater the reliability of the decision.

49

At each of the 2™ states at time t, the Viterbi decoder selects the survivor path as
the one with the largest path metric. The accumulated path metric and the path
probability are related by

t nel
M(rly) = log, p(rly) = Z log p(r,) 1y, 0y, (2.27)
i=l j '

=

—
)]
<O

If the bit metrics are given by M(ri@ lyi(i)) = a-[log, p(ri(j) Iyi(j)) + b], then the
path probability is

MM(rl y) - ntb

pirly)=e 2 (2.28)
Each state Sy (k =0, 1, ..., 2™-1) will have two entering paths, a survivor path with
metric M, and a competing path with metric M, (M, > M,). The probability of

choosing the wrong path is given by

ps. = Prob(path 2) (2.29)
k Prob(path 2) + Prob(path 1)
MM2 - nkb
= ¢’ (2.30)
lrl—2M2 - nkb EMl - nkb '
e + e 2
= ! 5 where A = 1{1_2(M1 - M,) (2.31)
1 +e a

With this probability the Viterbi decoder has made an error in the path it has chosen as

the survivor path. Consider the two paths merging in state S, at time t in Figure 2.18.
The all zero path is the survivor path with metric M, and the other is the competing path
with metric M,. The two paths are the same up to time t - § , (8, = 6 in this case). At

this point, the paths diverge and there are three differing information bits between the two

50

/ N
AN
l// \\\
® ©) ® /,@\ ® / ® &))
0/’ \\1 /, \\
Vel \ // \\
e \\ / X
® ©® © & ©® ® O 0 \6
l//, \\A/Ml
’ \
7 \
t-7 t—8m t-5 t—4 t-3 t-2 t-1 T t
M2

Figure 2.18 Example of the SOVA

paths at times t-2, t-3, and t-5. Using the probability of selecting the wrong path given in

(2.31), the probability associated with each bit p j can be modified for all bits u; for

timesj=t, t-1,..,t- 8, [4].

pj = pj if u;, = uy, (2.32a)

J
pj = pjl-ps) + (1-ppps, if vy #uy : (2.32b)

where uy, and uy, are the output bits at time j on paths 1 and 2 respectively. “The first

case can be neglected because choosing path 2 instead of path 1 would result in no error
. for the j th bit. Because the case in (3.32a) can be neglected, there is only a need to check

Uy # Uy, for times t-m, t-m-1, ..., -8, +1. This is because in order to terminate in any

given state at time t, the m input bits prior to time t must be equal in order to create the

51

given state, Sy . The probability in (2.32b) can be transformed into a bit reliability. From

(2.26), the log-likelihood for the j th bit can be expressed as

l - p, .
L, = log B (2.33)
P;

This can be combined with (2.31) and (2.32) to obtain an expression for updating the

likelihood function.

o I-p;(I-py) + (1-p;)ps

L;= ,
pj(l-py) + (1-pj)ps
et 1
l-p(——-—) - (-p.
~ log pJ(IA+ eA) (pJ)1 1+ e’
(——) + (1-p.
P o) Y P %
1 - p.
A A I + pJeA
p; +e” - pje P;
= log 3 = log i
pje” + 1 - p; oA 4 - Pj
P;
1 + eLJ+A A)
e” +e

A good approximation of this expression is to simply take the minimum of L j and A as
the new reliability [4].
L; = min(L;, A) (2.35)

For register exchange mode with truncation depth §, each state S, will have a shift

register of §-q bits where -1 bits represent the magnitude of the likelihood value L i

52

and one bit for the sign of L;, which corresponds to the output bit u;. The procedure

can be summarized as follows. For every state at time t, compute the path metrics for the

two paths entering state Sy . Choose the path with the higher metric as the survivor path

and update the path information in the register for S, . The reliability at time t, L, is

L . L In2 -)

initially set to co. Compute the metric difference A = — (M, - M,). Forj=t-m,t-
a

m- 1, ..., t- §,, compare the information of the two paths. If up, # Uy, then update the

new reliability using (2.35). After the surviving paths in each state have been determined,

and the reliability information has been updated for each state, the state with the highest
path metric is determined and the reliability and output bit at t - § are the output for the

decoder for time t.

53

Chapter 3

Simulation Techniques

Computer simulation plays an important role in the design and testing of
communications systems [5]. The results obtained from simulation can give a good
indication of how an aciual system will perform under a variety of conditibns.
Performance evaluation of complex communication systems using analytical techniques
can be difficult, if not impossible. Testing of the concatenated coding schemes presented
in this report using computer simulation will give an estimate of how these codes perform
under realistic conditions. In addition, the codes will be simulated using an “ideal”
AWGN channel to test how the coding systems Will perform under ideal conditions.
Monte Carlo techniques were used to obtain the results for both sirhulations. Monte
Carlo techniques are relatively simple to implement. Data is generated at the input to the
simulation. This data is then run through the system being simulated. The data at the
output of the simulation is compared to the data at the input to determine the number of
errors. The probability of an error is simply the number of errors divided by the total
number of simulation points. To be statistically confident in the results, the simulation
should produce at least 50 errors [S]. For small values of bit error rate, a large ﬁumber of
bits will be needed, which results in longer processing times. This large amount of

processing time is one of the drawbacks of using Monte Carlo techniques. The first step

54

in simulating a communications system is to describe the system in block diagram form,
where each block represents a signal processing operation. The model used for this

simulation is given in Figure 3.1.

Ralr;(iitom Coding Sample BPSK Transmit
Systems P Modulator Filter
Generator
AWGN +>
Error Decoding BPSK Receive
Counter Systems Demodulator Filter

Figure 3.1: Simulation system model

Simulation can either be done at baseband or bandpass. Baseband simulations
have no carrier frequency. This reduces the complexity of the system models such as the
filters. Bandpass simulations require a higher sampling frequency than baseband, and
therefore, more computational time. Bandpass simulations are necéssary when studying
upconversions, downconvérsions, and the effects of adjacent channel interferenée. Most
simulations that involve a single information signal can be done at baseband [13]. The

simulation used in this report was performed at baseband.

3.1 Random Number Generators

55

The various signals that exist in communication systems are random in nature.
The information signals found in communication systems typically use random voltage or
current waveforms to transmit information from one place to another. Noise is an
unwanted random signal, and causes errors in the information being sent. In order to
represent the random signals found in communication systems, a random number
generator (RNG) will be needed. Random number generators do not produce truly
random numbers, but a sequence of ~“pseudo” random numbers which repeat after a
period of time. These sequences should be stationary and uncorrelated. The mean,
variance, and other parameters computed for different segments of the RNG sequence
should be equal for a RNG to be considered stationary [5]. Having a RNG with a period
less than the simulation length will cause correlation in the RNG sequence. Choosing a

RNG with a large period is desirable to avoid correlation.

3.1.1 Uniform Random Number Generator

Uniform RNG generate equiprobbile numbers within a given interval, typically
between zero and one. Uniform RNG can be generated using the following multiplicative
congruential algorithm

Ij+1 = a-Ij (modulus m) 3.1

where a and m are integer constants. If a and m are chosen carefully, (3.1) will produce a
sequence of random numbers with a maximum period of m. The random number

generator used in this simulation can be found in [8] and has a very long period of

~ 23x 10! Thisis accomplished by combining two RNG sequences with

56

m; = 2147483563

a; = 40014

m, = 2147483399

a, = 40692.

In addition to a long period, this RNG passes all of the relevant statistical tests [8].
Assuming the probability of a ‘0" and a ‘1’ are equal, the random bit stream can be
obtained by using a uniform random number with the following conversion

by =1if I; >05

3.1.2 Gaussian Random Number Generator

There are situations that call for random numbers with different distributions, and
are typically generated by performing a transform of a uniform deviate. The generation of
Additive Gaussian White Noise (AWGN) in simulations calls for a sequence of normally
distributed random numbers. This normally distributed sequence can be generated by

using the Box Muller Method {5, 8]. If X; and X, are two independent variables with

uniform distribution between 0 and 1, then

Yy = U+ 0-4-2-In(X;) cos(2--X5) (3.2a)
and
Y, = 0+ 02 (X)) -sin2-7-X,) (3.2b)

are independent Gaussian variables with mean |1 and standard deviation G.

57

3.2 Sampling

In order to represent the signal in the simulation, the signals will need to be
sampled. The Nyquist rate of 2-B is the minimum sampiing rate for bandlimited signals
of bandwidth B. For simulations, the sampling rate needs to be much higher to accurately
represent the analog signal and to reduce the affects of aliasing. The number of samples
per symbol should be. an even integer between 8 and 16. Having the number of samples

per symbol greater than 16 is not necessary for most simulations [13].

3.3 Filters
In Communication systems, filters are needed for the purposes of bandlimiting
signals and rejecting out of band noise. The filtering in the process can produce

something known as intersymbol interference.

3.3.1 Intersymbol Interference

Consider the effects of passing a series of impulses spaced T, seconds apart
through a low pass filter. Each impulse produces its own output from the filter. The

output from one pulse extends into the output of pulse that starts T}, seconds later. This

is known as Intersymbol Interference (ISI) and it can produce errors at the receiver.
The effects of ISI can be avoided by an appropriate choice of a low pass filter.
Nyquist proposed a technique that theoretically produces zero ISL. This is accomplished

by creating in the receiver a pulse that resembles the sin x/x shape, crossing the axis at

58

intervals of T}, . The receiver samples the incoming wave at intervals of Ty, so at the

sampling instant, the tails of the preceding outputs are crossing the axis, and are therefore
zero. The only non-zero component is the pulse to be sampled, which solves the problem
of interference from other symbols. The filter proposed by Nyquist is the “Raised

Cosine” filter and theoretically produces zero ISI. The transfer function for this filter is

1.0 for |f| < f,
(f-f
HEE) = | cos? 20y for g <] < 2B, -,
4.-(By -1))
0 for |f| > 2-Bg-f

R .
where By = Tb is the filter bandwidth, o is the rolloff factor. The frequency f; and

the bandwidth By, are related by

oc=1-f—1 0
B

[¢]

IN
R
IN

The frequency response for different rolloff factors is given in Figure 3.2. The minimum

bandwidth value of Bj = % is obtained when o = 0.0. This value of rolloff is not

obtainable in practice. Practical filters use rolloff values ranging from 0.2 to 1.0 [12].

In some applications, the filtering operation to produce zero ISI needs to be split
between two filters, with one at the transmitter and one at the receiver. The optimum
partition in the sense of optimizing the signal to noise ratio is to divide the filter transfer

function equally between transmit and receive filter [5, 18].

HTransmit(f) = HReceive(f) = VH(f)

59

This is known as a Square Root Raised Cosine filter.

a=1.0
H(f)
05|~ -
o=0.5
0 | l I]
0 0.2 0.4 0.6 0.8 1

Figure 3.2: Frequency responses for different rolloff factors

The Raised Cosine filter produces zero ISI only when driven by an impulse. If the

filter is not driven by an impulse, then the transfer function of the filter must be divided